Picovoice Wordmark
Start Building
Introduction
Introduction
AndroidC.NETiOSLinuxmacOSNode.jsPythonRaspberry PiWebWindows
AndroidC.NETiOSNode.jsPythonWeb
SummaryPicovoice picoLLMGPTQ
Introduction
AndroidC.NETFlutteriOSJavaLinuxmacOSNode.jsPythonRaspberry PiReactReact NativeRustWebWindows
AndroidC.NETFlutteriOSJavaNode.jsPythonReactReact NativeRustWeb
SummaryPicovoice LeopardAmazon TranscribeAzure Speech-to-TextGoogle ASRGoogle ASR (Enhanced)IBM Watson Speech-to-TextWhisper Speech-to-Text
FAQ
Introduction
AndroidC.NETFlutteriOSJavaLinuxmacOSNode.jsPythonRaspberry PiReactReact NativeRustWebWindows
AndroidC.NETFlutteriOSJavaNode.jsPythonReactReact NativeRustWeb
SummaryPicovoice Cheetah
FAQ
Introduction
AndroidC.NETiOSLinuxmacOSNode.jsPythonRaspberry PiWebWindows
AndroidC.NETiOSNode.jsPythonWeb
SummaryAmazon PollyAzure TTSElevenLabsOpenAI TTSPicovoice Orca
Introduction
AndroidCiOSLinuxmacOSPythonRaspberry PiWebWindows
AndroidCiOSPythonWeb
SummaryPicovoice KoalaMozilla RNNoise
Introduction
AndroidCiOSLinuxmacOSNode.jsPythonRaspberry PiWebWindows
AndroidCNode.jsPythoniOSWeb
SummaryPicovoice EaglepyannoteSpeechBrainWeSpeaker
Introduction
AndroidCiOSLinuxmacOSPythonRaspberry PiWebWindows
AndroidCiOSPythonWeb
SummaryPicovoice FalconAmazon TranscribeAzure Speech-to-TextGoogle Speech-to-Textpyannote
Introduction
AndroidArduinoCChrome.NETEdgeFirefoxFlutteriOSJavaLinuxmacOSMicrocontrollerNode.jsPythonRaspberry PiReactReact NativeRustSafariUnityWebWindows
AndroidC.NETFlutteriOSJavaMicrocontrollerNode.jsPythonReactReact NativeRustUnityWeb
SummaryPorcupineSnowboyPocketSphinx
Wake Word TipsFAQ
Introduction
AndroidCChrome.NETEdgeFirefoxFlutteriOSJavaLinuxmacOSNode.jsPythonRaspberry PiReactReact NativeRustSafariUnityWebWindows
AndroidC.NETFlutteriOSJavaNode.jsPythonReactReact NativeRustUnityWeb
SummaryPicovoice RhinoGoogle DialogflowAmazon LexIBM WatsonMicrosoft LUIS
Expression SyntaxFAQ
Introduction
AndroidC.NETiOSLinuxmacOSNode.jsPythonRaspberry PiRustWebWindows
AndroidC.NETiOSNode.jsPythonRustWeb
SummaryPicovoice CobraWebRTC VAD
FAQ
Introduction
AndroidC.NETFlutteriOSNode.jsPythonReact NativeRustUnityWeb
AndroidC.NETFlutteriOSNode.jsPythonReact NativeRustUnityWeb
Introduction
C.NETNode.jsPython
C.NETNode.jsPython
FAQGlossary

picoLLM Inference Engine
iOS Quick Start

Platforms

  • iOS (16.0+)

Requirements

  • Xcode
  • Swift Package Manager or CocoaPods

Picovoice Account & AccessKey

Signup or Login to Picovoice Console to get your AccessKey. Make sure to keep your AccessKey secret.

Quick Start

Setup

  1. Install Xcode.

  2. Import the picoLLM-iOS package into your project.

To import the package using SPM, open up your project's Package Dependencies in XCode and add:

https://github.com/Picovoice/picollm.git

To import it into your iOS project using CocoaPods, add the following line to your Podfile:

pod 'picoLLM-iOS'

Then, run the following from the project directory:

pod install
  1. Download a picoLLM model file (.pllm) from Picovoice Console.

Model File Deployment

To deploy a model file (.pllm) as part of an iOS app, there are a few options:

  1. Include in App Bundle:

    • Add model file to your Application's bundle as a resource.
    • Keep in mind Apple enforces a maximum size limit, not all models will fit.
  2. Host Externally:

    • Host the model file on a server or cloud storage service.
    • Download the file from within the app.
  3. Copy to Device (for testing or manual installation):

    • Use AirDrop or connect your device via USB and copy your model to the device's storage.
    • Access the file programmatically within your app.

Usage

  1. Create an instance of the inference engine:
import PicoLLM
do {
let pllm = try PicoLLM(
accessKey: "${ACCESS_KEY}",
modelPath: "${MODEL_PATH}")
} catch { }
  1. Generate a prompt completion:
do {
let res = pllm.generate(prompt: "${PROMPT}")
} catch { }
  1. To interrupt completion generation before it has finished:
do {
pllm.interrupt();
} catch { }

Demo

For the picoLLM iOS SDK, we offer demo applications that demonstrate how to use it to generate text from a prompt or in a chat-based environment.

Setup

  1. Clone the picoLLM repository from GitHub using HTTPS:
git clone https://github.com/Picovoice/picollm.git
  1. Connect an iOS device via USB or launch an iOS device simulator.

Usage

  1. Open PicoLLMCompletionDemo.xcodeproj in XCode.

  2. Replace ${YOUR_ACCESS_KEY_HERE} in ViewController.swift with a valid AccessKey.

  3. Airdrop or copy the picoLLM model file (.pllm) file to your deployment device.

  4. Build and run the app.

For more information on our picoLLM demo for iOS or to see a chat-based demo, head over to our GitHub repository.

Resources

Package

  • picoLLM-iOS on Cocoapods

API

  • picoLLM-iOS API Docs

GitHub

  • picoLLM iOS SDK on GitHub
  • picoLLM iOS Demos on GitHub

Was this doc helpful?

Issue with this doc?

Report a GitHub Issue
picoLLM Inference Engine iOS Quick Start
  • Platforms
  • Requirements
  • Picovoice Account & AccessKey
  • Quick Start
  • Setup
  • Model File Deployment
  • Usage
  • Demo
  • Setup
  • Usage
  • Resources
Voice AI
  • Leopard Speech-to-Text
  • Cheetah Streaming Speech-to-Text
  • Orca Text-to-Speech
  • Koala Noise Suppression
  • Eagle Speaker Recognition
  • Falcon Speaker Diarization
  • Porcupine Wake Word
  • Rhino Speech-to-Intent
  • Cobra Voice Activity Detection
Local LLM
  • picoLLM Inference
  • picoLLM Compression
  • picoLLM GYM
Resources
  • Docs
  • Console
  • Blog
  • Use Cases
  • Playground
Sales & Services
  • Consulting
  • Foundation Plan
  • Enterprise Plan
  • Enterprise Support
Company
  • About us
  • Careers
Follow Picovoice
  • LinkedIn
  • GitHub
  • X
  • YouTube
  • AngelList
Subscribe to our newsletter
Terms of Use
Privacy Policy
© 2019-2025 Picovoice Inc.